Hitting the Reset Button on my Jointer/Planer

Introduction

Over time the outfeed table on my Rikon 25-210H worked its way out of adjustment, gradually creeping its way close to the cutterhead.  I found out about this one day by the one cutter slamming into the table when I turned on the machine.  So I was able to move the table back out of the way by turning its parallel arms but over time the table moved around more and more.

Looking at the Jet’s version of this machine (JJP-12HH), I saw that the outfeed adjustment arm also serves to lock it in place against the front cover.  So I ordered the three parts from eReplacementParts that would give me that:

Adjusting Handle (JJP12-014)
Knob (JJP12-015)
Bracket Screw (JJP12-016)

When the parts arrived I decided to start from scratch on tuning up the jointer tables, loosening the hinge adjustment screws thus throwing away the factory adjustment plus the work I had done.  I wasn’t very confident in how aligned the tables were so I wasn’t losing much.

Terms Used

Pitch Rotation of a table about the short axis of the machine.  Right/left ends are up/down.
Roll Rotation of a table about the long axis of the machine.  Front/back sides are up/down.
Twist Rotation involving both pitch and roll.  One corner is off from the others.
Stop Bolts The two bolts that each table stops on when closed.
Hinge Screws The four grub screws in each hinge that control its orientation
Hinge Bolts The three bolts in each hinge that secure it to the frame

(pitch and roll are aeronautic terms, they make it easier for me to visualize this stuff)

Tools

I have both the 38” and 50” straight edges from PeachTree and while the 38” model works OK the fact that the 50” lays across almost the entire table makes infeed adjustment a lot easier.

General Tips

  • Lock Down Levers and Stop Bolts
    • A smooshy feel when tightening means that the stop bolts are uneven; the “smoosh” is from the table flexing down to meet the top of both bolts.  If you have the bolts even then you will experience a nice firm feel when tightening the lever.
    • Adjust the bolts by hand and with the table down.  Turn one bolt to move the table up/down and then move the other bolt to just touch the table.
    • There are two stop bolts per table, with the locking rod in between them.  There are two in order to provider a wider, more stable platform for the table to rest on.  They do not participate in changing the pitch of either table; that is the job of the hinge levelling screws.  After making changes to the levelling screws both stop bolts should be brought into equal contact with the table.
    • When you are ready to lock the stop bolts down, do so with the table locked down.  This will help prevent the bolts from turning as you tighten the lock nuts down.  It helps to have two 13mm wrenches here as there isn’t a lot of space for a crescent wrench to fit into.
      • Tightening the lock nuts has the effect of moving the bolts upwards a small amount.  The thread’s backlash being taken up is my best guess as to why.  In my experience you will have to tighten the bolts down by another ~20° to account for this.
  • Outfeed Table
    • If you are installing the outfeed adjustment lever you can rotate the parallel arm as-needed to clear the guard arm mount.  
    • Loosen all grub screws before adjusting anything.  There are two on the parallel arm and four on the lift rods.

“Reset Button” Sequence

Outfeed

  1. Move infeed table down to take it out of the equation. You don’t want your straight edge resting on it.
  2. Back out all four leveling screws until they are loose.
  3. Tighten down hinge bolts
  4. Loosen all the grub screws to allow the outfeed table to be freely adjusted using its parallel
  5. Using the parallel arm try to adjust the outfeed to its ideal height, i.e. where the cutters just scrape your straight edge.  Work first on the back edge, closest to the hinge.  Note: it’s advise to not tune the table such that the Top Dead Center is at the ideal height.  Give yourself some wiggle room should the outfeed table settle lower.  
    1. If you are able to reach ideal height in back, move onto step 6.
    2. If you are not able to get the ideal height, i.e. the outfeed table is too low then you will need to raise it a bit via the hinge adjustment screws.  Adjust them evenly, say ¼ turn each.
      1. Again use the outfeed level to get the ideal height in back.  If needed raise the table more via the hinge screws.
  6. Now adjust the stop bolts to get the front of the table to the idea height.  
    1. This will most likely throw off the adjustment in back.  Use the lever to regain your ideal height in back.  This will mostly likely throw off your height in front, fix that via the stop bolts.
  7. When you are done tighten all the grub screws on the outfeed table.

Infeed

  1. Loosen the hinge leveling screws and tighten down the hinge bolts
  2. Adjust the infeed table to its uppermost position such that it is even-ish with the outfeed table
  3. At this point there shouldn’t be a lot of roll, just pitch to adjust for.
  4. Attack the pitch first, adjusting the hinge screws in left/right pairs.  For a gap of around 1/16”, start with pretty small turns of the screws, about ⅛ of the way around.
    1. Measure in the back side first by the hinge, noting which side has a bigger gap.
    2. Adjust the infeed table’s height to zero in on it being level with the outfeed table.  Raise it such that it just contacts your straight edge at some point, either left or to the right.
    3. Now check the front side, adjusting the stop bolts to match the roll between the outfeed and infeed tables.  Another way to think about this is that your goal here is to have your straight edge’s contact with the infeed table the same in both front and back.  It won’t be laying flat (unless you’re lucky) but the gaps and contact spots should at least be in the same areas.
    4. Now note your gaps which will dictate your next round of adjustment.  When you overshoot, and move the gap to the opposite end, back off the screws you just touched rather than tightening the screws by the new gap.  This minimizes the variables in play.
  5. Ideally you will be able to get things adjusted such that your 0.001” gauge won’t fit under the entire length of the table in both front and back; good luck with that 🙂

I put together a (too long) view on the process which also includes my thoughts on the product after messing around with it so much.

To summarize, setting the outfeed table is simpler than the infeed because it has fewer variables:

Outfeed:

  1. Match the cutter head’s height
  2. Match the cutter head’s roll

Infeed:

  1. Match the outfeed’s height
  2. Match the outfeed’s pitch
  3. Match the outfeed’s roll

Front Cover Bracket Screw Hole Marking

I used a dowel marker pin over the bracket screw to mark where the hole should be drilled in the front cover.  With the marker pin in place I positioned the cover about where it should go and then struck it with a rubber hammer.

Jet JCDC-2 vs. Grizzly G0548ZP Showdown!

I just got Jet’s 2HP cyclone dust collector as an upgrade from Grizzly’s 2HP canister unit.  My main driver was to get a more quiet dust machine with a side benefit of it being easier to empty.  So while I had both machines on hand I measured their sound levels and air volume throughput.

The purpose of this post is not only to compare the two machines but also to give a little more real world data on the sound levels produced by dust collectors as opposed to what the manufacturers publish.

My testing instruments were:

The ambient noise levels in my shop measured @ 43 dBA.

Open Test

img_20170107_110340
Side by side testing

My first test put the machines out in the open with a short length of 4″ hose to constrict flow a bit.  I stood with the sound meter from where the photo was taken, about 10 feet away.

Grizzly:  86 dBA,  1065 CFM

Jet: 82 dBA, 1070 CFM

The Grizzly’s sound level was pretty close to the published 83-85 dBA level.  The Jet’s number was quite a bit higher than their published value of 76 dBA.

The air volume numbers were essentially the same, showing that the 4″ hose restricted them to the same volume.

Enclosed Test

img_20170107_114246Next I tested the dust collectors where they actually live, in this weird little room my basement has.  It’s about 8′ x 8′ and is where the water main comes through the floor.  As a woodworker it serves me pretty well by giving me a plash to stash a noisy machine.

On this test I measured the sound levels from about 15′ away next to my lathe.  This is where I will spend a lot of time with the collector running while sanding or turning dry wood so I was interested to see what my ears would be subjected to.

As for airflow I measured the flow at my lathe’s dust hose and my jointer’s dust hose.  Each of these machines are at the end of the two branches of my dust system.

Grizzly: 76 dBA, Lathe = 550 CFM, Jointer = 500 CFM

Jet: 70 dBA, Lathe = 550 CFM, Jointer = 532 CFM
img_20170107_113447The two jointer numbers are not the same because the machines have different inlet locations and therefore force a different shape in the hose hooked up to them.  The Jet’s inlet is higher up so I was able to reduce the severity of the bends which netted me 30 more CFM.  The lathe piping run kept the same shape.

I was happy to note that the Jet’s lower noise level is very noticeable from my lathe area.  In fact the whooshing noise from the dust hood is pretty much louder than the actual dust collector.

Jet JCDC-2 Cyclone Dust Collector Assembly

img_20170106_202146
Awkwwward.

This past weekend I assembled my new dust collector, Jet’s 2HP cyclone unit.  The whole process took about two hours, most of which was spent getting the “head” (motor/impleller) mounted onto the frame.  That part, when done according to the instructions was honestly hard to do.

As you can see in the photo I used my “shop crane”, a Harbor Freight 1-ton model, to lift the head.  Unfortunately the legs of the shop crane did not allow the cyclone’s frame to be positioned directly underneath the head… they are about the exact same width as the halves of the frame.  So I tipped the two parts towards each other and got them bolted up.  This wasn’t an elegant or safe operation but it worked.  After it was bolted up I was able to tip the dust collector back upright.

If I had to do this over again I would still use my shop crane to lift the head, but I would not have first assembled the two frame halves together.  I would have left them separate and bolted them onto the head while in the air.  Then I would have lowered the dust collector to a horizontal position cradling the head on some the styrofoam it was packed in, and then assembled the rest of the frame.  Tilting it back up could have been assisted by the shop crane.